Abstract
Statistical analysis of data from the financial markets shows that generalized hyperbolic (GH) distributions allow a more realistic description of asset returns than the classical normal distribution. GH distributions contain as subclasses hyperbolic as well as normal inverse Gaussian (NIG) distributions which have recently been proposed as basic ingredients to model price processes. GH distributions generate in a canonical way Lévy processes, i.e. processes with stationary and independent increments. We introduce a model for price processes which is driven by generalized hyperbolic Lévy motions. This GH model is a generalization of the hyperbolic model developed by Eberlein and Keller (1995). It is incomplete. We derive an option pricing formula for GH driven models using the Esscher transform as martingale measure and compare the prices with classical Black-Scholes prices. The objective of this study is to examine the consistency of our model assumptions with the empirically observed price processes for underlyings and derivatives. Finally we present a simplified approach to the estimation of high-dimensional GH distributions and their application to measure risk in financial markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.