Abstract

Geometric Quantum Mechanics is a version of quantum theory that has been formulated in terms of Hamiltonian phase-space dynamics. The states in this framework belong to points in complex projective Hilbert space, the observables are real valued functions on the space, and the Hamiltonian flow is described by the Schr{\"o}dinger equation. Besides, one has demonstrated that the stronger version of the uncertainty relation, namely the Robertson-Schr{\"o}dinger uncertainty relation, may be stated using symplectic form and Riemannian metric. In this research, the generalized Robertson-Schr{\"o}dinger uncertainty principle for spin $\frac{1}{2}$ system has been constructed by considering the operators corresponding to arbitrary direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call