Abstract
For S ⊆ G, let κ(S) denote the maximum number r of edge-disjoint trees T1,T2,…,Tr in G such that V(Ti)∩V(Tj)=S for any i,j∈{1,2,⋯,r} and i ≠ j. For every 2 ≤ k ≤ n, the generalized k-connectivity of G κk(G) is defined as the minimum κ(S) over all k-subsets S of vertices, i.e., κk(G)= min {κ(S)|S⊆V(G)and|S|=k}. Clearly, κ2(G) corresponds to the traditional connectivity of G. The generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G. Cayley graphs have been used extensively to design interconnection networks. In this paper, we restrict our attention to two classes of Cayley graphs, the star graphs Sn and the bubble-sort graphs Bn, and investigate the generalized 3-connectivity of Sn and Bn. We show that κ3(Sn)=n−2 and κ3(Bn)=n−2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.