Abstract
We prove that, for a finitely generated group hyperbolic relative to virtually abelian subgroups, the generalised word problem for a parabolic subgroup is the language of a real-time Turing machine. Then, for a hyperbolic group, we show that the generalised word problem for a quasiconvex subgroup is a real-time language under either of two additional hypotheses on the subgroup.By extending the Muller–Schupp theorem we show that the generalised word problem for a finitely generated subgroup of a finitely generated virtually free group is context-free. Conversely, we prove that a hyperbolic group must be virtually free if it has a torsion-free quasiconvex subgroup of infinite index with context-free generalised word problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.