Abstract

As a continuing of the previous Theory of Magnitudes, this a General Theory
 The previous theory dealt only with the closest star in a ratio of its greatest inverse apparent magnitude. My new theory shows the distance between 2 stars anywhere on a photograph of the
 nights sky using centimeters. I am extending that beginning formula adding on a new equation with the integral calculus formula using the number value at that given to be raised to exponent 2 divided by 2 . All stars are using inverse Apparent Magnitudes like my first paper.
 My new formulas as stated 1+ Inverse Apparent Magnitudes one = Q 1
 1 + Inverse Apparent Magnitude two = Q2
 
 (Q1 + Q2) – (Q1 – Q2) times 2.5 divided by / (Q1 + Q2) + (Q1- Q2) times 8 pi take the square root of that by which was divided. take the natural logarithm of that and you get the value P
 take P squared and then divide P by 2 . call all of this formula W
 My second equation ; Euler’s number raised to its exponent is such ; total addition of the inverse apparent magnitudes in a centimeter using times that in centimeter plus one times 8 pi . . 
 take natural logarithm of that total using square root of total of this divided by 3 pi
 Take this second equation and square it the multiply this equation called Y by w then subtract
 this total by w ;Then divide the previous equation by the Natural Logarithm in This set of the Inverse apparent magnitude of the reference star raised to the exponent of 10 } .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.