Abstract
The Steiner tree problem is defined as follows—given a graph G=( V, E) and a subset X⊂ V of terminals, compute a minimum cost tree that includes all nodes in X. Furthermore, it is reasonable to assume that the edge costs form a metric. This problem is NP-hard and has been the study of many heuristics and algorithms. We study a generalization of this problem, where there is a “switch” cost in addition to the cost of the edges. Switches are placed at internal nodes of the tree (essentially, we may assume that all non-leaf nodes of the Steiner tree have a switch). The cost for placing a switch may vary from node to node. A restricted version of this problem, where the terminal set X cannot be connected to each other directly but only via the Steiner nodes V⧹ X, is referred to as the Steiner Tree-Star problem. The General Steiner Tree-Star problem does not require the terminal set and Steiner node set to be disjoint. This generalized problem can be reduced to the node weighted Steiner tree problem, for which algorithms with performance guarantees of Θ(ln n) are known. However, such approach does not make use of the fact that the edge costs form a metric. In this paper we derive approximation algorithms with small constant factors for this problem. We show two different polynomial time algorithms with approximation factors of 5.16 and 5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.