Abstract

Gregory’s decomposed theorem of isotropic plate is extended to investigate torsional circular shaft of cubic quasicrystal with homogeneous boundary conditions, and the theory of equivalence that Cheng’s refined theory and Gregory’s decomposed theorem is extended to the cylindrical coordinate. The general solution of torsional circular shaft on cubic quasicrystal with homogeneous boundary conditions is proposed on the basis of the classical elasticity theory and stress-displacement relations of cubic quasicrystal without ad hoc assumptions. At first expressions are obtained for all the displacements and stress components in term of some 1D functions. Using Lur’e method, the exact equations were given. And the exact equations for the torsional circular shaft on cubic quasicrystal without surface loadings consist of four governing differential equations: two harmonic equations and two transcendental equations. Using basic mathematic method and the general solutions, an example is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.