Abstract

In the present paper, given an evolving mixture of probability densities, we define a candidate diffusion process whose marginal law follows the same evolution. We derive as a particular case a stochastic differential equation (SDE) admitting a unique strong solution and whose density evolves as a mixture of Gaussian densities. We present an interesting result on the comparison between the instantaneous and the terminal correlation between the obtained process and its squared diffusion coefficient. As an application to mathematical finance, we construct diffusion processes whose marginal densities are mixtures of lognormal densities. We explain how such processes can be used to model the market smile phenomenon. We show that the lognormal mixture dynamics is the one-dimensional diffusion version of a suitable uncertain volatility model, and suitably reinterpret the earlier correlation result. We explore numerically the relationship between the future smile structures of both the diffusion and the uncertain volatility versions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.