Abstract

The general Gaussian multiple-access wiretap channel (GGMAC-WT) and the Gaussian two-way wiretap channel (GTW-WT) are considered. In the GGMAC-WT, multiple users communicate with an intended receiver in the presence of an eavesdropper who receives their signals through another GMAC. In the GTW-WT, two users communicate with each other over a common Gaussian channel, with an eavesdropper listening through a GMAC. A secrecy measure that is suitable for this multiterminal environment is defined, and achievable secrecy rate regions are found for both channels. For both cases, the power allocations maximizing the achievable secrecy sum rate are determined. It is seen that the optimum policy may prevent some terminals from transmission in order to preserve the secrecy of the system. Inspired by this construct, a new scheme cooperative jamming is proposed, where users who are prevented from transmitting according to the secrecy sum rate maximizing power allocation policy ldquojamrdquo the eavesdropper, thereby helping the remaining users. This scheme is shown to increase the achievable secrecy sum rate. Overall, our results show that in multiple-access scenarios, users can help each other to collectively achieve positive secrecy rates. In other words, cooperation among users can be invaluable for achieving secrecy for the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.