Abstract

Abstract It is likely that several features of the mid-latitude circulation in the earth's atmosphere wig also be observed in two-dimensional, nondivergent flow with buoyant forcing and surface friction. Properly scalled, buoyancy effects are surprisingly similar to baroclinic effects. A linear stability analysis shows that the growth rate of unstable disturbances depends on zonal wavenumber in much the same way as that of baroclinic waves, except for the absence of a high-wavenumber cutoff related to the Rossby radius of deformation. The energy conversion mechanisms in buoyancy-driven two-dimensional flow closely resemble those in the atmosphere: eddy kinetic energy is maintained primarily by conversion of eddy potential energy, the kinetic energy of the mean zonal flow is maintained primarily by a reverse energy cascade, and the flow owes its existence and dynamics to the mean temperature contrast between latitude circles. The equations studied in this paper include these for enstrophy and temperature v...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call