Abstract

[1] The Gulf of Aqaba (Gulf of Eilat) is a terminal elongated basin that exchanges water with the northern Red Sea via the Straits of Tiran. The gulf's hydrography exhibits strong seasonal variability, with deep mixing during February–March and stable stratification afterward. We use an oceanic model to investigate the annual cycle of the general circulation and hydrographic conditions in the gulf. We demonstrate that on a subannual time scale, the general circulation deviates from the standard depiction of inverse estuarine circulation. During the restratification season (April–August), the exchange flux with the northern Red Sea is maximal and is driven by density differences between the basins, while atmospheric fluxes actually counteract this exchange flow. The observed warming of the surface layer is mainly due to advection of warm water from the northern Red Sea, with a smaller contribution from surface heating. During the mixing season (September–March), the exchange flux and the advection of heat are minimal and atmospheric fluxes drive convection rather than the exchange flow. We estimate the seasonality of the exchange flow through the Straits of Tiran. The seasonal variability in the exchange flow is large and ranges from 0.04 Sv during early spring to 0.005 Sv during early winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call