Abstract

Lilium pumilum is an excellent wildflower germplasm resource with high resistance to salinity stress. The gene LpBCP plays an important role in salinity tolerance of L. pumilum. Studying the molecular mechanism of salinity resistance in L. pumilum will provide insights into multiple aspects, including breeding better varieties, environmental protection, improving soil conditions, etc. Conventional methods were used to determine different physiological indicators of Nicotiana benthamiana after NaHCO3 treatment, i.e. chlorophyll content, soluble phenol content and lignin content. RT-qPCR was carried out to find expression of LpBCP in different organs and under abiotic stresses. DAB was used to detect H2 O2 in leaves in situ. A yeast two-hybrid system was used to screen for LpBCP interacting proteins. LpBCP was cloned from bulbs of L. pumilum. The highest expression of LpBCP was in roots and bulbs of transgenic plants. LpBCP-overexpressed plants showed less wilting, compared to WT plants. LpBCP transgenic plants have higher chlorophyll, soluble phenol and lignin content, and lower relative conductivity under 500 mM NaHCO3 stress. In addition, H2 O2 scavenging in transgenic plants was much improved, indicating increased resistance to NaHCO3 stress. Thirteen LpBCP-interacting proteins were screened using the yeast two-hybrid method and five were associated with salt stress. Based on our findings, LPBCP could be a key gene that can be used to improve L. pumilum salt tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call