Abstract

The characterization of the thermo-gelation mechanism and properties of ethyl cellulose/canola oil oleogels was performed using rheology and thermal analysis. Thermal analysis detected no evidence for thermal transitions contributed to secondary conformational changes, suggesting a gelation mechanism that does not involve secondary ordered structure formation. Rheological analysis demonstrated a relationship between the polymer molecular weight and the final gel strength, the cross-over behavior as well as the gel point temperature. Increasing polymer molecular weight led to an increase in final gel strength, the modulus at cross-over, and the gel point temperature. Cooling/heating rates affect gel modulus only for the low molecular weight samples. A decrease in gel strength with increasing cooling rate was detected. The cross-over temperature was not affected by the cooling/heating rates. Cooling rate also affected the gelation setting time where slow cooling rates produced a stable gel faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.