Abstract
AbstractWe consider the stochastically forced Burgers equation with an emphasis on spatially rough driving noise. We show that the law of the process at a fixed timet, conditioned on no explosions, is absolutely continuous with respect to the stochastic heat equation obtained by removing the nonlinearity from the equation. This establishes a form of ellipticity in this infinite-dimensional setting. The results follow from a recasting of the Girsanov Theorem to handle less spatially regular solutions while only proving absolute continuity at a fixed time and not on path-space. The results are proven by decomposing the solution into the sum of auxiliary processes, which are then shown to be absolutely continuous in law to a stochastic heat equation. The number of levels in this decomposition diverges to infinite as we move to the stochastically forced Burgers equation associated to the KPZ equation, which we conjecture is just beyond the validity of our results (and certainly the current proof). The analysis provides insights into the structure of the solution as we approach the regularity of KPZ. A number of techniques from singular SPDEs are employed, as we are beyond the regime of classical solutions for much of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.