Abstract
We study a class of phase-space distribution functions that is generated from a Gaussian convolution of the Wigner distribution function. This class of functions represents the joint count probability in simultaneous measurements of position and momentum. We show that, using these functions, one can determine the expectation value of a certain class of operators accurately, even if measurement data performed only with imperfect detectors are available. As an illustration, we consider the eight-port homodyne detection experiment that performs simultaneous measurements of two quadrature amplitudes of a radiation field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.