Abstract
A representation of local image structure is proposed which takes into account both the image's spatial structure at a given location, as well as its "deep structure", that is, its local behaviour as a function of scale or resolution (scale-space). This is of interest for several low-level image tasks. The proposed basis of scale-space, for example, enables a precise local study of interactions of neighbouring image intensities in the course of the blurring process. It also provides an extrapolation scheme for local image data, obtained at a given spatial location and resolution, to a finite scale-space neighbourhood. This is especially useful for the determination of sampling rates and for interpolation algorithms in a multilocal context. Another, particularly straightforward application is image enhancement or deblurring, which is an instance of data extrapolation in the high-resolution direction. A potentially interesting feature of the proposed local image parametrisation is that it captures a trade-off between spatial and scale extrapolations from a given interior point that do not exceed a given tolerance. This trade-off suggests the possibility of a fairly coarse scale sampling at the expense of a dense spatial sampling (large relative spatial overlap of scale-space kernels). The central concept developed in this paper is an equivalence class called the multiscale Zocal jet, which is a hierarchical, local characterisation of the image in a full scale-space neighbourhood. For this local jet, a basis of fundamental polynomials is constructed that captures the scale-space paradigm at the local level up to any given order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.