Abstract

We consider the Gaussian multiple access wire-tap channel (GMAC-WT). In this scenario, multiple users communicate with an intended receiver in the presence of an intelligent and informed wire-tapper who receives a degraded version of the signal at the receiver. We define suitable security measures for this multiaccess environment. Using codebooks generated randomly according to a Gaussian distribution, achievable secrecy rate regions are identified using superposition coding and time-division multiple access (TDMA) coding schemes. An upper bound for the secrecy sum-rate is derived, and our coding schemes are shown to achieve the sum capacity. Numerical results are presented showing the new rate region and comparing it with the capacity region of the Gaussian multiple-access channel (GMAC) with no secrecy constraints, which quantifies the price paid for secrecy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.