Abstract

In this paper, we study the capacity of the diamond channel. We focus on the special case where the channel between the source node and the two relay nodes are two separate links with finite capacities and the link from the two relay nodes to the destination node is a Gaussian multiple access channel. We call this model the Gaussian multiple access diamond channel. We first propose an upper bound on the capacity. This upper bound is a single-letterization of an $n$-letter upper bound proposed by Traskov and Kramer, and is tighter than the cut-set bound. As for the lower bound, we propose an achievability scheme based on sending correlated codes through the multiple access channel with superposition structure. We then specialize this achievable rate to the Gaussian multiple access diamond channel. Noting the similarity between the upper and lower bounds, we provide sufficient and necessary conditions that a Gaussian multiple access diamond channel has to satisfy such that the proposed upper and lower bounds meet. Thus, for a Gaussian multiple access diamond channel that satisfies these conditions, we have found its capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.