Abstract
This paper aims to present a systematic study on the Gauss images of complete minimal surfaces of genus 0 of finite total curvature in Euclidean 3-space and Euclidean 4-space. We focus on the number of omitted values and the total weight of the totally ramified values of their Gauss maps. In particular, we construct new complete minimal surfaces of finite total curvature whose Gauss maps have 2 omitted values and 1 totally ramified value of order 2, that is, the total weight of the totally ramified values of their Gauss maps are 5/2(=2.5)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$5/2\\,(=2.5)$$\\end{document} in Euclidean 3-space and Euclidean 4-space, respectively. Moreover we discuss several outstanding problems in this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.