Abstract

We describe the physical relativity of light and matter quantum subsystems, their correlations, and energy exchanges. We examine the most commonly adopted definitions of atoms and photons, noting the significant difference in their localisation properties when expressed in terms of primitive manifestly gauge-invariant and local fields. As a result, different behaviours for entanglement generation and energy exchange occur for different definitions. We explore such differences in detail using toy models of a single photonic mode interacting with one and two dipoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call