Abstract

We study the gate hysteresis behavior in single electron transport driven by surface acoustic wave (SAW/SET) devices over a wide temperature range from 1.7 to 200 K. From the temperature dependence, we come to the conclusion that the gate hysteresis in SAW/SET devices arises from a combination of the screening effect of the surface state and the electron tunneling between the moving quantum dot and the impurity quantum dot. In addition, when a perpendicular magnetic field is applied to the sample, the behavior of the gate hysteresis changes substantially. A competition between the magnetic field and the gate voltage on determining the electronic wave function is considered as the reason for the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.