Abstract

As a continuation of our systematic investigation of the effect of substituents on the ring geometry and dynamics in silacyclobutanes and in order to explore the role of the silicon atom as a mediator for electronic interactions between the attached fragments, we studied the molecular structure of 1,1-diethynylsilacyclobutane (DESCB) by means of gas-phase electron diffraction and ab initio calculations. The structural refinement of the electron diffraction data yielded the following bond lengths (ra) and bond angles (uncertainties are 3σ): r(Si–C)=1.874(2)Å,r(Si–C)=1.817(1)Å,r(–CC–)=1.209(1)Å,r(C–C)=1.563(2)Å, ∠(C–Si–C)=79.2(6)°, ∠(C–Si–C)=106.5(6)°. The geminal Si–CC moieties were found to be bent outwards by 3.1(15)° and the puckering angle was determined to be 30.0(15)°. The evidently short Si–C bond length, which was also reproduced by the ab initio calculations, could be rationalized as being the consequence of the electronic interaction between the outer π charges of the triple bond and the 3pπ orbitals at the silicon atom. It is also likely that the conjugation of the geminal ethynyl groups leads to an enhancement of this bond contraction. Electrostatic interactions and the subsequent reduction of the covalent radius of the silicon atom may also contribute to this bond shortening. It has been found that the endocyclic Si–C bond length fits nicely within a scheme describing a monotonous decrease of the Si–C bond length with the increase of the electronegativity of the substituent in various geminally substituted silacyclobutanes.A series of related silacyclobutanes and acyclic diethynylsilanes have been studied by applying various ab initio methods and their optimized structures were compared to the structure of DESCB. Among these compounds are 1,1-dicyanosilacyclobutane (DCYSCB), which is isoelectronic to DESCB, 1,1-diethynylcyclobutane (DECB) which is isovalent to DESCB, monoethynylsilacyclobutane (MESCB) and monocyanosilacyclobutane (MCYSCB). Searching for reasonable support for the explanation of the structural results of DESCB we performed detailed natural population analysis as well as Mulliken population analysis (MPA) on DESCB and other related molecules. In contrast to the Mulliken charges, the natural atomic charges provided helpful information concerning the bonding properties in DESCB and the corresponding compounds. By varying the size of some basis sets, we could demonstrate the validity of the repeatedly discussed dependency of the Mulliken MPA on the basis set.For the performance of the quantum mechanical calculations we employed the following methods and basis sets: HF/6-31G(d,p), DFT/B3PW91/6-31G(d), DFT/B3PW91/6-311++G(d,p), MP2/6-31G(d,p) and MP2/6-311++G(d,p).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.