Abstract

A prototype of a single-gap glass Resistive Plate Chamber (RPC) is constructed by the authors. To find the requirements for better operation of the detector's gas system, we have simulated the flow of the Argon gas through the detector by using computational fluid dynamic methods. Simulations show that the pressure inside the chamber linearly depends on the gas flow rate and the chamber's output hose length. The simulation results were compatible with experiments. We have found that the pressure-driven speed of the gas molecules is two orders of magnitude larger in the inlet and outlet regions than the blocked corners of a 14 × 14 cm2 chamber, and most likely the difference in speed is higher for larger detectors and different geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call