Abstract

We investigate the spin-Peierls instability of some periodic 1D Heisenberg spin systems having a gapless energy spectrum at different values of coupling J between the unit cells. Using the density-matrix renormalization group method we numerically study the dependence of critical exponents p of spin-Peierls transition of above spin systems on the value of J. In contrast to chain systems, we find significantly non-monotonous dependence p (J) for three-legs ladder system. In the limit of weak coupling J we derive effective spin s chain Hamiltonians describing the low-energy states of the system considered by means of perturbation theory. The value of site spin s coincides with the value of the ground-state spin of the isolated unit cell of the system considered. This means that at small J values all the systems with the singlet ground state and the same half-integer value of s should have a similar critical behavior which is in agreement with our numerical study. The presence of gapped excitations inside the unit cells at small values of J should give, for our spin systems, at least one intermediate plateau in field dependence of magnetization at low temperatures. The stability of this plateau against the increase of the values of J and temperature is studied using the quantum Monte-Carlo method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.