Abstract

ABSTRACTThe two-dimensional (2D) Ga-nitride/air photonic quasi-crystals (PQC) were successfully fabricated by the technique of focused Ga ion beam (FIB) milling on GaN based epitaxial wafers. The effects of the PQC on the current injected edge emitting GaN-based light emitters were investigated. The quasi-crystal structures studied in this work are based on square-triangular tiling with 8-fold or 12-fold symmetry. The air hole diameter in the different PQC patterns was varied from 95nm up to 1200nm, the filling factor of air hole was in the range of 10% to 50% and the depth of the hole was 90nm to 370nm, respectively. Among these, the nearest center-to-center distance of the holes and/or the lattice constant was reached to be 170nm. The photonic quasi-crystals on the GaN-based light emitters demonstrated a two to three factor of magnitude enhancement of surface extractive emission. The blocking of the propagation of planar-guided modes by the photonic quasi-crystals was observed. By comparison of symmetry effect among the triangular lattice PC and PQCs, it was found that the GaN-based photonic quasi-crystal (PQC) with 12-fold symmetry provided a much favorable enhancement of the extractive light emission over that of triangle lattice PC and 8-fold symmetric PQC as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.