Abstract

Gamow-Teller(GT) resonances in finite nuclei are studied in a fully consistent relativistic random phase approximation (RPA) framework. A relativistic form of the Landau-Migdal contact interaction in the spin-isospin channel is adopted. This choice ensures that the GT excitation energy in nuclear matter is correctly reproduced in the non-relativistic limit. The GT response functions of doubly magic nuclei $^{48}$Ca, $^{90}$Zr and $^{208}$Pb are calculated using the parameter set NL3 and $g_0'$=0.6 . It is found that effects related to Dirac sea states account for a reduction of 6-7 % in the GT sum rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.