Abstract

The release of glutathione from astroglial cells was investigated using astroglia-rich primary cultures prepared from the brains of newborn rats. These cells release glutathione after onset of an incubation in a glucose-containing minimal medium. The amount of extracellular glutathione increased with the time of incubation, although the accumulation slowed down gradually. An elevated rate of increase of the glutathione concentration in the incubation medium was found if the astroglial ectoenzyme gamma-glutamyl transpeptidase was inhibited by acivicin. The activity of gamma-glutamyl transpeptidase in astroglia-rich primary cultures, which was found to be 1.9 +/- 0.3 nmol/(min x mg protein), was markedly reduced if the cells had been incubated in the presence of acivicin. After 2 h of incubation with acivicin half-maximal and maximal inhibition of gamma-glutamyl transpeptidase activity was found at concentrations of about 5 microM and 50 microM, respectively. In the presence of acivicin at a concentration above 10 microM the glutathione content found released from astroglial cells apparently increased almost proportional to time for up to 10 h. Under these conditions the average rate of release was 2.1 +/- 0.3 nmol/(h x mg protein) yielding after a 10 h incubation an extracellular glutathione content three times that of the medium of cells incubated without inhibitor. Half-maximal and maximal effects on the level of extracellular glutathione were found at 4 microM and 50 microM acivicin, respectively. After a 10 h incubation with acivicin the intracellular content of glutathione was reduced to 75% of the level of untreated astroglial cultures. These results suggest that glutathione released from astroglial cells can serve as substrate for the ectoenzyme gamma-glutamyl transpeptidase of these cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call