Abstract

Pseudomonas plecoglossicida is an important pathogenic bacterium in aquaculture that causes visceral granulomas in large yellow croaker (Larimichthys crocea). Uridine diphosphate glucose phosphorylase encoded by galU plays a key role in biosynthesis of the bacterial envelope, particularly lipopolysaccharide and the capsule. In this study, we inactivated the galU gene in the P. plecoglossicida isolate XSDHY-P. The galU mutant strain showed impaired growth in the early exponential stage and lacked the O polysaccharide side chain in lipopolysaccharide, but almost no defect in biofilm formation was detected. The galU mutant strain also exhibited significantly more sensitivity to the bactericidal action of normal fish serum mediated by the complement system compared to the wild-type strain. In a cell model originating from the head kidney of large yellow croaker, the galU mutant strain showed lower capacities of adhesion, invasion, and intracellular survival compared to the wild-type strain. In addition, the deficiency of the galU mutant drastically decreased bacterial loads in tissues and attenuated P. plecoglossicida virulence in fish. These results suggest that the galU gene of P. plecoglossicida is required for in vivo survival in large yellow croaker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.