Abstract
We study a particle moving in R2 under a constant (external) force and bouncing off a periodic array of convex domains (scatterers); the latter must satisfy a standard ‘finite horizon’ condition to prevent ‘ballistic’ (collision-free) motion. This model is known to physicists as Galton board (it is also identical to a periodic Lorentz gas). Previous heuristic and experimental studies have suggested that the particle’s speed v(t) should grow as t1/3 and its coordinate x(t) as t2/3. We prove these conjectures rigorously; we also find limit distributions for the rescaled velocity t−1/3v(t) and position t−2/3x(t). In addition, quite unexpectedly, we discover that the particle’s motion is recurrent. That means that a ball dropped on an idealized Galton board will roll down but from time to time it should bounce all the way back up (with probability one).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.