Abstract

The endosperm of the seed of Gleditsia triacanthos contains 4.8% of 85% ethanol-soluble, galactomannan-like oligosaccharides having Man:Gal ratios of 1.5–2.6:1 and an average degree of polymerization of 15. They have a narrow distribution of molecular weights and of ratio of components. The oligosaccharides have the gross structure accepted for the galactomannans, namely, a β-(1→4)-linked d-mannopyranosyl backbone having single stubs of α-(1→6)-linked d-galactopyranosyl groups. Some of the lateral chains contain more than one unit, and a minor proportion of the branches are ended by arabinofuranose or fucopyranose residues. Unusual branching points formed by 3,4-linked d-mannosyl, or 3,6-linked d-galactosyl units, or both, were also found. Despite their low molecular weight, the oligosaccharides form aggregates with a structure similar to that of the aggregates of the related galactomannans, but having a lower association energy. This fact, together with the difficulty of combining with more than one partner (due to the short, central chain), results in an increased solubility and in nonviscous solutions. The 13C-n.m.r. spectrum differentiated clearly the five structural units of the oligosaccharides, namely, the reducing and nonreducing end-chains of the d-mannosyl backbone; substituted and nonsubstitued, internal β-(1→4)-linked mannopyranosyl units of the backbone; and the galactosyl nonreducing end-chain of the lateral chains. The C-4 signal of the (1→4)-linked d-mannose and the C-6 signal of the same, but substituted, units showed splitting into three lines. The first has been attributed to sequence-related heterogeneity, whereas the latter is tentatively explained by assuming that this resonance is sensitive to whether the mannosyl units linked to that residue are also branched, or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call