Abstract

BackgroundManual tracking has been used since the 1970s as an effective radio telemetry approach for evaluating habitat use of fish in fluvial systems. Radio tags are often located by continually reducing the gain when approaching the tag along a watercourse to estimate its location, termed here as the ‘Gain Reduction Method’. However, to our knowledge the accuracy of this method has not been empirically evaluated and reported in the literature. Here, the longitudinal and lateral positional errors of radio tags are assessed when applying the Gain Reduction Method in a small stream environment. Longitudinal and lateral positional errors (i.e. the difference between the estimated and actual radio tag location) were evaluated based on the distance from the actual tag position, the gain recorded when estimating the tag position and a number of environmental parameters (i.e. stream depth, velocity, stream width and specific conductivity).ResultsThe manual tracking trials produced an average lateral positional error of 0.91 m (± 1.4) and a longitudinal positional error of 0.66 m (± 0.87). A larger degree of longitudinal positional error was documented when the gain was higher (t = 2.21, p < 0.05). Larger lateral positional error was recorded when the tag was farther across the stream (t = 2.27, p < 0.01) and due to greater inaccuracy in longitudinal positioning (t = 3.2, p = 0.001). In addition, greater rates of lateral positional error were found when specific conductivity levels were higher (t = 2, p < 0.05). Longitudinal and lateral positional errors were not influenced by stream width (m), depth (m) or velocity (m/s).ConclusionsAlthough the Gain Reduction Method is commonly used to estimate habitat use of stream fishes, there appears to be a paucity of information in the literature that addresses the accuracy for obtaining fine-scale positioning of tagged fishes. This study is aimed to address this knowledge gap by identifying sources of locational error with the Gain Reduction Method. Overall, habitat variables were deemed to be unlikely to have a significant effect on estimating fish position in small streams. Researchers should be aware that error in the longitudinal direction will translate into larger errors in the lateral position. Further exploration of positional accuracy using this active tracking approach is recommended for larger and deeper fluvial systems.

Highlights

  • Manual tracking has been used since the 1970s as an effective radio telemetry approach for evaluating habitat use of fish in fluvial systems

  • The purpose of this study was to demonstrate the degree of error associated with the Gain Reduction Method for locating a radio tag within a small stream system and evaluating which variables contribute to positional error

  • Gain was predictive of longitudinal positional error with a positive linear relationship

Read more

Summary

Introduction

Manual tracking has been used since the 1970s as an effective radio telemetry approach for evaluating habitat use of fish in fluvial systems. While radio telemetry has been used for the past 30 years to understand fish habitat use and associated movements [10, 11], there is limited information and analyses relating to the accuracy of this method for estimating the location of tagged fishes. The purpose of this study was to demonstrate the degree of error associated with the Gain Reduction Method for locating a radio tag within a small stream system and evaluating which variables contribute to positional error. The accuracy of this method is evaluated by quantifying both lateral and longitudinal positional error when locating a radio telemetry tag in a small stream

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call