Abstract

Photoreceptor phosphodiesterase-6 (PDE6) is a peripheral membrane protein synthesized in the inner segment of photoreceptor cells. Newly synthesized PDE6 is transported to the outer segment (OS) where it serves as a key effector enzyme in the phototransduction cascade. Proper localization of PDE6 in photoreceptors is critically important to the function and survival of photoreceptor cells. The mechanism of PDE6 transport to the OS remains largely unknown. In this study, we investigated potential OS targeting signals of PDE6 by constructing cGMP-binding, cGMP-specific phosphodiesterase-5/PDE6 chimeric proteins and analyzing their localization in rods of transgenic Xenopus laevis. We found that efficient OS localization of chimeric isoprenylated PDE enzymes required the presence of a targeting motif within the PDE6 GAFa domain. Furthermore, the GAFa-dependent localization signal was sufficient to target GAFa fusion protein to the OS. Our results support the idea that effective trafficking of the peripheral membrane proteins to the OS of photoreceptor cells requires a sorting/targeting motif in addition to a membrane-binding signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.