Abstract

Assigning a gene's function to specific pathways used for classical conditioning, such as conditioned stimulus (CS) and unconditioned stimulus (US) pathway, is important for understanding the fundamental molecular and cellular mechanisms underlying memory formation. Prior studies have shown that the GABA receptor RDL inhibits aversive olfactory learning via its role in the Drosophila mushroom bodies (MBs). Here, we describe the results of further behavioral tests to further define the pathway involvement of RDL. The expression level of Rdl in the MBs influenced both appetitive and aversive olfactory learning, suggesting that it functions by suppressing a common pathway used for both forms of olfactory learning. Rdl knock down failed to enhance learning in animals carrying mutations in genes of the cAMP signaling pathway, such as rutabaga and NF1, suggesting that RDL works up stream of these functions in CS/US integration. Finally, knocking down Rdl or over expressing the dopamine receptor dDA1 in the MBs enhanced olfactory learning, but no significant additional enhancement was detected with both manipulations. The combined data suggest that RDL suppresses olfactory learning via CS pathway involvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.