Abstract

Technology for combinatorial optimization is rapidly changing, and as the size and scope of problems that can be solved steadily increases, the complexity of the underlying technology is growing. We foresee a huge demand for both the simplification of use of combinatorial optimization technology (so called “model and run” capabilities), as well as increasing need for the ability to quickly build complex hybrid solutions. These demands will place new emphasis on universal modeling languages and model transformation capabilities, as well as flexible and high level ways of specifying hybrid solutions. These changes put constraint programming in an ideal position since: constraint programming has the most high-level view of problems to begin with so we can ease modeling difficulties; and since constraint programming is an integrative technology, we have already spent considerable effort in making different solving technologies work together seamlessly. In this position paper we outline some of the key challenges and important research directions we foresee for optimization technology,

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.