Abstract

The technological advancements promote the rise of the fourth industrial revolution, where key terms are efficiency, innovation, and enterprises’ digitalization. Market globalization, product mass customization, and more complex products need to reflect on changing the actual design methods and developing business processes and methodologies that have to be data-driven, AI-assisted, smart, and service-oriented. Therefore, there is a great interest in experimenting with emerging technologies and evaluating how they impact the actual business processes. This paper reports a comparison among the major trends in the digitalization of a Factory of the Future, in conjunction with the two major strategic programs of Industry 4.0 and China 2025. We have focused on these two programs because we have had experience with them in the context of the FIRST H2020 project. European industrialists identify the radical change in the traditional manufacturing production process as the rise of Industry 4.0. Conversely, China mainland launched its strategic plan in China 2025 to promote smart manufacturing to digitalize traditional manufacturing processes. The main contribution of this review paper is to report about a study, conducted and part of the aforementioned FIRST project, which aimed to investigate major trends in applying for both programs in terms of technologies and their applications for the factory’s digitalization. In particular, our analysis consists of the comparison between Digital Factory, Virtual Factory, Smart Manufacturing, and Cloud Manufacturing. We analyzed their essential characteristics, the operational boundaries, the employed technologies, and the interoperability offered at each factory level for each paradigm. Based on this analysis, we report the building blocks in terms of essential technologies required to develop the next generation of a factory of the future, as well as some of the interoperability challenges at a different scale, for enabling inter-factories communications between heterogeneous entities.

Highlights

  • The digitalization of a factory is deeply impacted by the new trends emerging under the umbrella of programs developed in the on-going fourth industrial revolution, which aims to automatize traditional manufacturing process and systems, taking benefits from the modern technologies developed by the ICT

  • This review paper analyzed the state-of-art paradigms that emerged for realizing the Factory of the Future in the context of Industry 4.0 and China 2025, two programs we had experience of in the context of the FIRST H2020 project

  • As shown from the proposed study, digital factory and cloud manufacturing share the same goal of realizing the manufacturing plant digitalization with different characteristics. It emerged that Cloud Manufacturing (Cmfg) is much more popular in the Chinese scientific literature, while Digital Factories are popular in Europe

Read more

Summary

Introduction

The digitalization of a factory is deeply impacted by the new trends emerging under the umbrella of programs developed in the on-going fourth industrial revolution, which aims to automatize traditional manufacturing process and systems, taking benefits from the modern technologies developed by the ICT. Digitalization includes the application of technologies at a different scale, shifting from software downing to infrastructure, and systems to revolutionize traditional production processes and business. In this scenario, different programs have emerged to identify major trends in the digitalization of a factory. European industrialists identify the radical change in the traditional manufacturing production process as the rise of Industry 4.0 [1]. China mainland launched its strategic plan China 2025 to promote smart manufacturing as an objective for digitalizing traditional manufacturing processes

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call