Abstract

Direct cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells. However, this was later demonstrated to be insufficient for the reprogramming of human cells and additional factors were required. Thereafter, most studies have focused on implementing reprogramming efficiency and obtaining fully reprogrammed and functional iCMs, by the incorporation of other transcription factors, microRNAs or small molecules to the original GMT cocktail. In this respect, great advances have been made in recent years. However, there is still no consensus on which of these GMT-based varieties is best, and robust and highly reproducible protocols are still urgently required, especially in the case of human cells. On the other hand, apart from CMs, other cells such as endothelial and smooth muscle cells to form new blood vessels will be fundamental for the correct reconstruction of damaged cardiac tissue. With this aim, several studies have centered on the direct reprogramming of fibroblasts into induced cardiac progenitor cells (iCPCs) able to give rise to all myocardial cell lineages. Especially interesting are reports in which multipotent and highly expandable mouse iCPCs have been obtained, suggesting that clinically relevant amounts of these cells could be created. However, as of yet, this has not been achieved with human iCPCs, and exactly what stage of maturity is appropriate for a cell therapy product remains an open question. Nonetheless, the major concern in regenerative medicine is the poor retention, survival, and engraftment of transplanted cells in the cardiac tissue. To circumvent this issue, several cell pre-conditioning approaches are currently being explored. As an alternative to cell injection, in vivo reprogramming may face fewer barriers for its translation to the clinic. This approach has achieved better results in terms of efficiency and iCMs maturity in mouse models, indicating that the heart environment can favor this process. In this context, in recent years some studies have focused on the development of safer delivery systems such as Sendai virus, Adenovirus, chemical cocktails or nanoparticles. This article provides an in-depth review of the in vitro and in vivo cardiac reprograming technology used in mouse and human cells to obtain iCMs and iCPCs, and discusses what challenges still lie ahead and what hurdles are to be overcome before results from this field can be transferred to the clinical settings.

Highlights

  • CardiogenesisThe mammalian heart is the first organ formed in the developing embryo and is composed of four chambers (right atrium, right ventricle, left atrium, and left ventricle) and three layers: the endocardium (the innermost endothelial layer), the myocardium (the middle muscular layer), and the epicardium (the outermost mesothelial layer)

  • The mammalian heart is the first organ formed in the developing embryo and is composed of four chambers and three layers: the endocardium, the myocardium, and the epicardium

  • Different signals regulate the commitment of these cardiogenic mesodermal precursors to two distinct cardiac progenitor cells (CPCs) called first heart field (FHF) and second heart field (SHF)

Read more

Summary

Cardiogenesis

The mammalian heart is the first organ formed in the developing embryo and is composed of four chambers (right atrium, right ventricle, left atrium, and left ventricle) and three layers: the endocardium (the innermost endothelial layer), the myocardium (the middle muscular layer), and the epicardium (the outermost mesothelial layer). In the part of the SHF called the anterior heart field (AHF), CPCs marked by the activation of Mef2c-AHF enhancer [4], reside within the pharyngeal mesoderm during early cardiogenesis At this stage and in this particular niche, these AHF CPCs are mulitpotent and can proliferate through the expression of N-cadherin and interaction with canonical Wnt signals [5] before they migrate and enter the developing primitive heart tube and differentiate into the variety of cell lineages (including CMs, vascular endothelial cells, smooth muscle cells, and fibroblasts) that form the outflow track and right ventricle [6,7,8]. The aforementioned genes have been considered and used in direct cardiac reprogramming strategies towards CM- and CPC-like states

Regenerative Medicine to Treat Cardiac Diseases
The Current Progresses and Challenges to Cell Therapy For Heart Diseases
Cell Pre-Treatments
Genetically Modified Cells
Cells Encapsulated in Biomaterials
Direct Reprogramming for Heart Regeneration
Direct Reprogramming into Mouse iCMs
Direct Reprogramming Into Human iCMs
Direct Reprogramming Into iCPCs
Direct Cardiac Reprogramming In Vivo
Findings
Future Directions and Challenges
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.