Abstract

ABSTRACT We study the evolution of six exoplanetary systems with the stellar evolutionary code Modules for Experiments in Stellar Astrophysics(mesa) and conclude that they will likely spin-up the envelope of their parent stars on the red giant branch (RGB) or later on the asymptotic giant branch (AGB) to the degree that the mass-loss process might become non-spherical. We choose six observed exoplanetary systems where the semimajor axis is $a_i \simeq 1\small{-}2 {~\rm au}$, and use the binary mode of mesa to follow the evolution of the systems. In four systems, the star engulfs the planet on the RGB, and in two systems on the AGB, and the systems enter a common envelope evolution (CEE). In two systems where the exoplanet masses are Mp ≃ 10MJ, where MJ is Jupiter mass, the planet spins up the envelope to about $10{{\ \rm per\ cent}}$ of the break-up velocity. Such envelopes are likely to have significant non-spherical mass-loss geometry. In the other four systems where Mp ≃ MJ the planet spins up the envelope to values of $1{-}2 {{\ \rm per\ cent}}$ of break-up velocity. Magnetic activity in the envelope that influences dust formation might lead to a small departure from spherical mass-loss even in these cases. In the two cases of CEE on the AGB, the planet deposits energy to the envelope that amounts to ${\gt}10{{\ \rm per\ cent}}$ of the envelope binding energy. We expect this to cause a non-spherical mass-loss that will shape an elliptical planetary nebula in each case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.