Abstract

The use of resistant cultivars is one of the most practical and cost-efficient strategies for managing plant diseases. However, the efficiency of resistant cultivars in disease management is limited by pathogenic variability in pathogen populations. Knowledge of the evolutionary history and potential of the pathogen population may help to optimize the management of disease-resistance genes, irrespective of the breeding strategy used for their development. In this review, we examine the diversity in virulence phenotypes of Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpeas, analyze the genetic variability existing within and among those phenotypes, and infer a phylogenetic relationship among the eight known pathogenic races of this fungus. The inferred intraspecific phylogeny shows that each of those races forms a monophyletic lineage. Moreover, virulence of races to resistant chickpea cultivars has been acquired in a simple stepwise pattern, with few parallel gains or losses. Although chickpea cultivars resistant to Fusarium wilt are available, they have not yet been extensively deployed, so that the stepwise acquisition of virulence is still clearly evident.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call