Abstract
In previous work, we evolved a population of Trichoderma citrinoviride in liquid cultures to speed up its asexual development cycle. The evolved population, called T-6, formed conidia 3 times sooner and in >1000-fold greater numbers. Here, we identify the steroid pregnenolone as a molecular signal for this different behavior. Media in which the ancestral T. citrinoviride population was grown (called ancestral spent media) contained a submerged conidiation inhibitor. Growing the evolved population T-6 in ancestral spent media eliminated the abundant formation of conidia. This inhibition depended on the amount and age of the ancestral spent medium and the time that the ancestral spent medium was added to the T-6 culture. Fractionation of the ancestral spent medium identified a hydrophobic inhibiting compound with a molecular weight less than 2000 g/mol. A combination of GC-MS, ELISA, and reaction with cholesterol oxidase identified it as pregnenolone. The addition of pregnenolone to cultures of T-6 inhibited submerged conidiation by inhibiting formation of conidiophores, while 10 other analogous steroids did not. Pregnenolone also inhibited submerged conidiation of Fusarium graminearum PH-1, a plant pathogen that causes head blight in wheat and barley. This identification of steroids as signal molecules in fungi creates opportunities to disrupt this signaling to control fungal behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.