Abstract

Melampsora larici-populina (Mlp) is a devastating pathogen of poplar trees, causing the defoliating poplar leaf rust disease. Genomic studies have revealed that Mlp possesses a repertoire of 1184 small secreted proteins (SSPs), some of them being characterized as candidate effectors. However, how they promote virulence is still unclear. This study investigates the candidate effector Mlp37347’s role during infection. We developed a stable Arabidopsis transgenic line expressing Mlp37347 tagged with the green fluorescent protein (GFP). We found that the effector accumulated exclusively at plasmodesmata (PD). Moreover, the presence of the effector at plasmodesmata favors enhanced plasmodesmatal flux and reduced callose deposition. Transcriptome profiling and a gene ontology (GO) analysis of transgenic Arabidopsis plants expressing the effector revealed that the genes involved in glucan catabolic processes are up-regulated. This effector has previously been shown to interact with glutamate decarboxylase 1 (GAD1), and in silico docking analysis supported the strong binding between Mlp37347 and GAD1 in this study. In infection assays, the effector promoted Hyalonoperospora arabidopsidis growth but not bacterial growth. Our investigation suggests that the effector Mlp37347 targets PD in host cells and promotes parasitic growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.