Abstract

Some version of the statement of the Fundamental Theorem of Algebra first appeared early in the 17th century in the writings of several mathematicians, including Peter Roth, Albert Girard, and Rene Descartes. The first proof of the Fundamental Theorem was published by Jean Le Rond d’Alembert in 1746 [2], but his proof was not very rigorous. Carl Friedrich Gauss is often credited with producing the first correct proof in his doctoral dissertation of 1799 [15], although this proof also had gaps. (For a comparison of these two proofs, see [26, pp. 195–200].) Today there are many known proofs of the Fundamental Theorem of Algebra, including proofs using methods of algebra, analysis, and topology. (The references include many papers and books containing proofs of the Fundamental Theorem; [14] alone contains 11 proofs.) Our focus in this paper will be on the use of pictures to see why the theorem is true. Of course, if we want to use pictures to display the behavior of polynomials defined on the complex numbers, we are immediately faced with a difficulty: the complex numbers are two-dimensional, so it appears that a graph of a complex-valued function on the complex numbers will require four dimensions. Our solution to this problem will be to use color to represent some dimensions. We begin by assigning a color to every number in the complex plane. Figure 1 is a picture of the complex plane in which every point has been assigned a different color. The origin is colored black. Traveling counterclockwise around a circle centered at the origin, we go through the colors of a standard color wheel: red, yellow, green, cyan, blue, magenta, and back to red. Points near the origin have dark colors, with the color assigned to a complex number z approaching black as z approaches 0. Points far from the origin are light, with the color of z approaching white as |z| approaches infinity. Every complex number has a different color in this picture, so a complex number can be uniquely specified by giving its color. We can now use this color scheme to draw a picture of a function f : C → C as follows: we simply color each point z in the complex plane with the color corresponding to the value of f(z). From such a picture, we can read off the value of f(z), for any complex number z, by determining the color of the point z in the picture, and then consulting Figure 1 to see what complex number is represented by that color.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call