Abstract

We study the Schrödinger equation on a flat euclidean cone $${\mathbb{R}_+ \times \mathbb{S}^1_\rho}$$ of cross-sectional radius ρ > 0, developing asymptotics for the fundamental solution both in the regime near the cone point and at radial infinity. These asymptotic expansions remain uniform while approaching the intersection of the “geometric front,” the part of the solution coming from formal application of the method of images, and the “diffractive front” emerging from the cone tip. As an application, we prove Strichartz estimates for the Schrödinger propagator on this class of cones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.