Abstract

Despite several recent proposals to achieve blind source separation (BSS) for realistic acoustic signals, the separation performance is still not good enough. In particular, when the impulse responses are long, performance is highly limited. In this paper, we consider a two-input, two-output convolutive BSS problem. First, we show that it is not good to be constrained by the condition T>P, where T is the frame length of the DFT and P is the length of the room impulse responses. We show that there is an optimum frame size that is determined by the trade-off between maintaining the number of samples in each frequency bin to estimate statistics and covering the whole reverberation. We also clarify the reason for the poor performance of BSS in long reverberant environments, highlighting that the framework of BSS works as two sets of frequency-domain adaptive beamformers. Although BSS can reduce reverberant sounds to some extent like adaptive beamformers, they mainly remove the sounds from the jammer direction. This is the reason for the difficulty of BSS in reverberant environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.