Abstract

BackgroundDNA methylation is an epigenetic modification that plays an important role in animal and plant development. Among the diverse types of DNA methylation modifications, methylation of cytosines catalyzed by DNA cytosine methyltransferases (DNMTs) is the most common. Recently, we characterized DNA methyltransferase genes including HlDnmt1 and HlDnmt from the Asian longhorned tick, Haemaphysalis longicornis. However, the dynamic expression and functions of these DNMTs at different developmental stages and feeding statuses of the important vector tick H. longicornis remain unknown.ResultsThe expression levels of HlDnmt1 and HlDnmt were significantly different at the four developmental stages: eggs, larvae, nymphs, and adults, with the highest expression levels observed in the larval stage. HlDnmt1 and HlDnmt showed different expression trends in the midguts, ovary, Malpighian tubules, and salivary glands of engorged adults, with the highest expression of HlDnmt1 observed in the ovary and the lowest in the midguts; HlDnmt expression was the highest in the midguts and the lowest in the Malpighian tubules. After RNA interference, the relative expression of HlDnmt1 and HlDnmt in H. longicornis decreased significantly, resulting in a significant decrease in the biting rate of H. longicornis. RNA-seq revealed that the differentially expressed genes were mainly enriched in the biological processes of peptide biosynthesis and the cell components of ribosomes. Molecular functions were mainly concentrated on oxidoreductase activity, ribosome structure composition, serine-type endopeptidase activity, molecular function regulators, and endopeptidase inhibitor activity. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in autophagy and lysosome pathways, amino sugar and nucleotide sugar metabolism, glyceride metabolism, ribosomes, and other pathways.ConclusionsHlDnmt1 and HlDnmt played an important role during development and feeding of H. longicornis, and their functions were potentially associated with lysosome pathways. These results provide basic knowledge for understanding the epigenetic regulation of the development of the tick H. longicornis, which sheds light on control strategies for ticks and tick-borne diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.