Abstract
Abstract In this work, we established new travelling wave solutions for some nonlinear evolution equations with dual-power-law nonlinearity namely the Zakharov–Kuznetsov equation, the Benjamin–Bona–Mahony equation and the Korteweg–de Vries equation. The functional variable method was used to construct travelling wave solutions of nonlinear evolution equations with dual-power-law nonlinearity. The travelling wave solutions are expressed by generalized hyperbolic functions and the rational functions. This method presents a wider applicability for handling nonlinear wave equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Sciences and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.