Abstract

The transfer of mitochondrial genes to the nucleus is a recurrent and consistent feature of eukaryotic genome evolution. Although many theories have been proposed to explain such transfers, little relevant data exist. The observation that clonal and self-fertilizing plants transfer more mitochondrial genes to their nuclei than do outcrossing plants contradicts predictions of major theories based on nuclear recombination and leaves a gap in our conceptual understanding how the observed pattern of gene transfer could arise. Here, with a series of deterministic and stochastic simulations, we show how epistatic selection and relative mutation rates of mitochondrial and nuclear genes influence mitochondrial-to-nuclear gene transfer. Specifically, we show that when there is a benefit to having a mitochondrial gene present in the nucleus, but absent in the mitochondria, self-fertilization dramatically increases both the rate and the probability of gene transfer. However, absent such a benefit, when mitochondrial mutation rates exceed those of the nucleus, self-fertilization decreases the rate and probability of transfer. This latter effect, however, is much weaker than the former. Our results are relevant to understanding the probabilities of fixation when loci in different genomes interact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call