Abstract

S-glutathionylation, the formation of mixed disulfides of glutathione with cysteine residues of proteins, is a broadly observed physiological modification that occurs in response to oxidative stress. Since cysteine residues are particularly susceptible to oxidative modification by reactive oxygen species, S-glutathionylation can protect proteins from irreversible oxidation. In this study, we show that the kinase activity of the non-receptor tyrosine kinase c-Abl is inhibited by in vitro thiol modification; specifically, the cysteine residues of c-Abl are modified by S-glutathionylation and by thiol alkylating agents such as 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and N-ethylmaleimide. Modification of cysteine residues of c-Abl tyrosine kinase using glutathione disulfide and thiol alkylating agents corresponds to a concomitant loss of kinase activity. We also demonstrate that S-glutathionylation of c-Abl can be reversed using a physiological system involving glutaredoxin and this reversal restores c-Abl kinase activity. To our knowledge, these are the first data to show S-glutathionylation of c-Abl, and this modification may represent a mechanism of regulation of c-Abl kinase activity in cells under oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.