Abstract

Considering the poor intrinsic healing potential of articular cartilage, resident chondrogenic stem/progenitor cells (CSPCs) have gained attention in recent years. Although, CSPCs are attracted by a cartilage injury, knowledge about the post-traumatic behaviour and functional role of this cell population is fairly basic. The present study, not only elaborated on the regenerative capacities of CSPCs, but also illuminated potential immunomodulatory properties after cartilage trauma. Estimation of the CSPC population size within previously impacted cartilage explants by flow-cytometry revealed an increased percentage of CSPC-marker positive cells as compared to unimpacted tissue. In line with this, proliferation, chemotactic migration and in vitro wound healing activity of isolated CSPCs was similarly enhanced after stimulation with trauma-conditioned (TC) medium. Further, a significant increase in pro- and anti-inflammatory gene expression, as well as IL-6 secretion due to TC-medium-stimulation was measured. In this context, antioxidative or chondroanabolic therapeutic intervention alleviated the post-traumatic response of TC-medium-activated CSPCs and substantially influenced CSPC chondrogenic differentiation in different ways. Overall, this study provided novel insights concerning the functional role of CSPCs after cartilage trauma and the effects of a therapeutic intervention in order to improve regenerative processes and prevent cartilage degeneration following trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.