Abstract

To determine which arginine residues are responsible for band 3-mediated anion transport, we analyzed hydroxyphenylglyoxal (HPG)-modified band 3 protein in native erythrocyte membranes. HPG-modification leads to inhibition of the transport of phosphoenolpyruvate, a substrate for band 3-mediated transport. We analyzed the HPG-modified membranes by reverse phase-HPLC, and determined that arginine 901 was modified by HPG. To determine the role of Arg 901 in the conformational change induced by anion exchange, we analyzed HPG-modification of the membranes when 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS) or diethypyrocarbonate (DEPC) was present. DNDS and DEPC fix band 3 in the outward and inward conformations, respectively. HPG-modification was unaffected in the presence of DEPC but decreased in the presence of DNDS. In addition to that, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which specifically reacts with the outward conformation of band 3, did not react with HPG-modified membranes. Furthermore, we expressed a band 3 mutant in which Arg 901 was replaced by alanine (R901A) on yeast membranes. The kinetic parameters indicated that the R901A mutation affected the rate of conformational change of the band 3 protein. From these results, we conclude that the most C-terminal arginine, Arg 901, has a functional role in the conformational change that is necessary for anion transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.