Abstract

Turtle auditory hair cells are frequency tuned by the activity of large-conductance calcium-activated potassium (KCa) channels, the frequency range being dictated primarily by the channel kinetics. Seven alternatively spliced isoforms of the KCa channel alpha-subunit, resulting from exon insertion at two splice sites, were isolated from turtle hair cells. These, when expressed in Xenopus oocytes, produced KCa channels with a range of apparent calcium sensitivities and channel kinetics. However, most expressed channels were less calcium sensitive than the hair cells' native KCa channels. Coexpression of alpha-subunit with a bovine beta-subunit substantially increased the channel's calcium sensitivity while markedly slowing its kinetics, but kinetic differences between isoforms were preserved. These data suggest a molecular mechanism for hair cell frequency tuning involving differential expression of different KCa channel alpha-subunits in conjunction with an expression gradient of a regulatory beta-subunit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call